Aiaa Obrechkoff versus Super Implicit Methods for the Integration of Keplerian Orbits

نویسندگان

  • Beny Neta
  • Toshio Fukushima
چکیده

This paper discusses the numerical solution of rst order initial value problems and a special class of second order ones those not containing rst derivative Two classes of methods are discussed super implicit and Obrechko We will show equivalence of super implicit and Obrechko schemes The advantage of Obrechko methods is that they are high order one step methods and thus will not require additional starting values On the other hand they will require higher derivatives of the right hand side In case the right hand side is complex we may prefer super implicit methods The super implicit methods may in general have a larger error constant but one can get the same error constant for the cost of an extra future value

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-stable high-order super-implicit and Obrechkoff methods for periodic initial value problems

This paper discusses the numerical solution of periodic initial value problems. Two classes of methods are discussed, superimplicit and Obrechkoff. The advantage of Obrechkoff methods is that they are high-order one-step methods and thus will not require additional starting values. On the other hand they will require higher derivatives of the right-hand side. In cases when the right-hand side i...

متن کامل

On second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize

Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...

متن کامل

Obrechkoff Versus Super - Impl ic i t M e t h o d s for the Solut ion of First - and Second - Order Init ial Value

K e y w o r d s O b r e c h k o f f methods, Super-implicit method, Initial value problems. 1: I N T R O D U C T I O N In th is paper , we discuss t h e numer ica l so lu t ion of f i rs t -order ini t ia l va lue p rob l ems ( IVPs) y'(x) = f ( x , y(~)) , y(0) = y0, (1) and a specia l class (for which yl is miss ing) of second-order I V P s y ' ( x ) = f ( z , y ( x ) ) , y(O) = Yo, yI(O) = Y...

متن کامل

A new two-step Obrechkoff method with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrodinger equation and related IVPs with oscillating solutions

A new two-step implicit linear Obrechkoff twelfth algebraic order method with vanished phase-lag and its first, second, third and fourth derivatives is constructed in this paper. The purpose of this paper is to develop an efficient algorithm for the approximate solution of the one-dimensional radial Schrodinger equation and related problems. This algorithm belongs in the category of the multist...

متن کامل

P-stability‎, ‎TF and VSDPL technique in Obrechkoff methods for the numerical solution of the Schrodinger equation

Many simulation algorithms (chemical reaction systems, differential systems arising from the modeling of transient behavior in the process industries and etc.) contain the numerical solution of systems of differential equations. For the efficient solution of the above mentioned problems, linear multistep methods or Runge-Kutta technique are used. For the simulation of chemical procedures the ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015